Predictive Strategies Combating School Dropout in Technical Education
Multiple Linear Regression Analysis on Technical Course Data to Predict and Counteract Dropout Trends
Abstract
School dropout in Technical and Vocational courses represents a significant challenge, leading to negative impacts on educational development and causing financial losses for institutions. Despite its importance, there exists a gap in literature regarding predictive approaches to address dropout. This study explores mathematical modeling and regression analysis to understand and anticipate dropout rates in new courses. Using multiple linear regression on data from 688 classes from 2017-2018 from a technical school, significant correlations between variables and dropout were identified, with emphasis on the class timings as a critical factor. The study concludes by highlighting the importance of considering class timings in retention strategies and underscores the application of mathematical methods in education. As an outcome, a formula was generated via Minitab to predict dropout accurately, offering a valuable tool for educational institutions
Downloads
Published
How to Cite
Issue
Section
License
O Conselho Editorial, bem como as instituições mantenedoras do periódico, não se responsabilizam pelas opiniões, idéias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es).
Os autores, uma vez que receberem o aceite de publicação, automaticamente cedem, sem qualquer ônus, os direitos autorais, inclusive tradução, para o Latin American Journal of Business Management. A citação parcial de artigos publicados é autorizada sem restrições desde que seja identificada a fonte.